Submanifolds with parallel mean curvature vector of a Euclidean space or a sphere
نویسندگان
چکیده
منابع مشابه
relating diameter and mean curvature for submanifolds of euclidean space
Given a closed m-dimensional manifold M immersed in R, we estimate its diameter d in terms of its mean curvature H by
متن کاملSubmanifolds with Parallel Mean Curvature Vector in Pinched Riemannian Manifolds
In this paper, we prove a generalized integral inequality for submanifolds with parallel mean curvature vector in an arbitrary Riemannian manifold, and from which we obtain a pinching theorem for compact oriented submanifolds with parallel mean curvature vector in a complete simply connected pinched Riemannian manifold, which generalizes the results obtained by Alencar-do Carmo and Hong-Wei Xu.
متن کاملRICCI CURVATURE OF SUBMANIFOLDS OF A SASAKIAN SPACE FORM
Involving the Ricci curvature and the squared mean curvature, we obtain basic inequalities for different kind of submaniforlds of a Sasakian space form tangent to the structure vector field of the ambient manifold. Contrary to already known results, we find a different necessary and sufficient condition for the equality for Ricci curvature of C-totally real submanifolds of a Sasakian space form...
متن کاملFUZZY HV -SUBSTRUCTURES IN A TWO DIMENSIONAL EUCLIDEAN VECTOR SPACE
In this paper, we study fuzzy substructures in connection withHv-structures. The original idea comes from geometry, especially from thetwo dimensional Euclidean vector space. Using parameters, we obtain a largenumber of hyperstructures of the group-like or ring-like types. We connect,also, the mentioned hyperstructures with the theta-operations to obtain morestrict hyperstructures, as Hv-groups...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kodai Mathematical Journal
سال: 1971
ISSN: 0386-5991
DOI: 10.2996/kmj/1138846315